Fast Local Algorithms for Large Scale Nonnegative Matrix and Tensor Factorizations
نویسندگان
چکیده
Nonnegative matrix factorization (NMF) and its extensions such as Nonnegative Tensor Factorization (NTF) have become prominent techniques for blind sources separation (BSS), analysis of image databases, data mining and other information retrieval and clustering applications. In this paper we propose a family of efficient algorithms for NMF/NTF, as well as sparse nonnegative coding and representation, that has many potential applications in computational neuroscience, multisensory processing, compressed sensing and multidimensional data analysis. We have developed a class of optimized local algorithms which are referred to as Hierarchical Alternating Least Squares (HALS) algorithms. For these purposes, we have performed sequential constrained minimization on a set of squared Euclidean distances. We then extend this approach to robust cost functions using the Alpha and Beta divergences and derive flexible update rules. Our algorithms are locally stable and work well for NMF-based blind source separation (BSS) not only for the over-determined case but also for an under-determined (over-complete) case (i.e., for a system which has less sensors than sources) if data are sufficiently sparse. The NMF learning rules are extended and generalized for N-th order nonnegative tensor factorization (NTF). Moreover, these algorithms can be tuned to different noise statistics by adjusting a single parameter. Extensive experimental results confirm the accuracy and computational performance of the developed algorithms, especially, with usage of multi-layer hierarchical NMF approach [3]. key words: Nonnegative matrix factorization (NMF), nonnegative tensor factorizations (NTF), nonnegative PARAFAC, model reduction, feature extraction, compression, denoising, multiplicative local learning (adaptive) algorithms, Alpha and Beta divergences.
منابع مشابه
Algorithms for Nonnegative Tensor Factorization
Nonnegative Matrix Factorization (NMF) is an efficient technique to approximate a large matrix containing only nonnegative elements as a product of two nonnegative matrices of significantly smaller size. The guaranteed nonnegativity of the factors is a distinctive property that other widely used matrix factorization methods do not have. Matrices can also be seen as second-order tensors. For som...
متن کاملBlind multispectral image decomposition by 3D nonnegative tensor factorization.
Alpha-divergence-based nonnegative tensor factorization (NTF) is applied to blind multispectral image (MSI) decomposition. The matrix of spectral profiles and the matrix of spatial distributions of the materials resident in the image are identified from the factors in Tucker3 and PARAFAC models. NTF preserves local structure in the MSI that is lost as a result of vectorization of the image when...
متن کاملTensor Decompositions for Very Large Scale Problems
Modern applications such as neuroscience, text mining, and large-scale social networks generate massive amounts of data with multiple aspects and high dimensionality. Tensors (i.e., multi-way arrays) provide a natural representation for such massive data. Consequently, tensor decompositions and factorizations are emerging as novel and promising tools for exploratory analysis of multidimensional...
متن کاملScalable Boolean Tensor Factorizations using Random Walks
Tensors are becoming increasingly common in data mining, and consequently, tensor factorizations are becoming more and more important tools for data miners. When the data is binary, it is natural to ask if we can factorize it into binary factors while simultaneously making sure that the reconstructed tensor is still binary. Such factorizations, called Boolean tensor factorizations, can provide ...
متن کاملNewton-Based Optimization for Nonnegative Tensor Factorizations
Tensor factorizations with nonnegative constraints have found application in analyzing data from cyber traffic, social networks, and other areas. We consider application data best described as being generated by a Poisson process (e.g., count data), which leads to sparse tensors that can be modeled by sparse factor matrices. In this paper we investigate efficient techniques for computing an app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 92-A شماره
صفحات -
تاریخ انتشار 2009